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ABSTRACT

This report contains a description of the models to be used in
analyzing the capabilities of ground-based sensors in determining the
mass of orbiting bodies, model coefficients, and the justification for
their selection. Relations are derived for computing sensitivity coeffi-~
cients and their coupling to mass variance for the case of noisy, biased
sensors (monostatic and tri-static radars, Baker - Nunn cameras), and
for spherical and tumbling cylindrical satellites.
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SECTION I

INTRODUCTION

This document is the second in a series of three theoretical reports
prepared under Air Force Contract F19628-67-C00L1. The first of the
series, Technical Report Number 1 of the referenced contract, was concerned
with the mathematical models and relationships necessary to perform a
detailed maximum-likelihood/minimum-variance error analysis of the capability
of ground-based sensors in determining the mass of a satellite’”. It was
specialized to account fgr the following restrictions:

1) The sensors observed the satellite without error.

2) The satellite was a sphere of 5-meter diameter.

3) All the physical characteristics of the body except mass
were known without error.

L) All the error in the computed mass resulted from errors

and uncertainties in the knowledge of the orbit-perturbing forces.

The present report is a companion document, extending the theoretical
development to remove the restrictions of perfect sensor observations and
of perfect knowledge of the non-mass body characteristics. In addition,
the body shapes are generalized from the sphere of the preceding report
to include also one of a pair of cylindrical objects of length 10 meters
and diameters 2 and 5 meters, respectively. The cylinders are free to
tumble in a propellor motion, with the tumble axis perpendicular to the
flight path.

Since the analysis in many places depends upon the developments

% Superscript numerals denote entries in the References Section of the present
report.



of the previous reports, it is suggested that the reader have that document

available for reference.



SECTION II

PERTURBATIONS TO TWO-BODY MOTION

A, GENERAL EQUATIONS OF MOTION
In general,

d-l{/dt = 2(3_% t) + E(LC: € u, tls

d_?/dt = Q(J_C, € U t):

where

) - —x -
x2 ¥
b'd Z

x(t) = 3] =

xh %
XS ¥

0 .

(2.1

(2.2)

is the state vector describing completely the orbit at any time t, £ is

the vector of two-body accelerations

L
*s5
X
2(x,t) = :
-,axl/r3 )
- Ax2/13
- HX,)/I‘B

and F is the vector of non-two-body accelerations

Fx g, t) = fo-—r] + |o-—q] * fom——
Zdrag Tsolar Zsun, moon

2

(2.3)



L4 = atmospheric drag acceleration vector,

= solar pressurc acceleration vector,
solar

i . : ;
=sun, moon = gravitational acceleration vector duc to thec cun and
moon taken as point masses,

= gravitational acceleration vector duc to the asphericity
of the earth

F,
The vector E can be as large as & six-dimensional state vector

which describes rigid-body rotation, having the Euler angles of the
satcllitc as its first three elements and their time derivatives as its
renaining three. The rotational excitation vector g(z,gi,;g, t) re-
{lects the possible coupling of the orbit to the rotation, c.g., through
gravity-gradient torquing, and the coupling of the dynamic bilases, as,
for example, drag, to these rotations.

Enl

The vector ¥ appears in F both because the rotations present changing

cross-scctional areas in ¥ and r , and because of the conscrva-
=drag =solar

tive exchangc of energy between the translational motion of the orbit

and the rotational metion of the satellite about its center of mass.

That is, if the satellite tumble-rate increases in a conservative ficld,

the kinetic energy rmst come from somewhere, and that "somewhere® is the

translational energy of the orbit.

This conservative coupling is investigated in Appendix I of this
report, where it is shown that it is indced possible to de-orbit a satel-
lite in & non-dissipative enviromment using only torque devices. Iiowever,

8
the minimum de-orbiting time is showm to be on the order of 10~ ycars,

50 this conservative coupling of § to x can be, and is in (2.3), ignorcd.



B, TUMBLING MOIE

The mode of tumbling for non-spherical satellites is restricted
under this contract to be a propellor-like motion, with the axis of ro-
tation directed along the satellite's velocity vector. Since, also, the
non-spherical satellites are designated to be cylinders, it is clear that
the same cross-sectional area of a satcllite is always prcsented to the
atmospheric drag mechanisz, As far as gdrag is concerned, then, it is
not a function of the rotations E(t).

Since the sun and earth see changing aspect arcas for this mode of

tunbling, the direct and earth-reflected solar pressure vector Z°olar

14Shy
however, a function of E(t).
Tiro things must now be done: the precise dynamics of B(t) must be

established or assumed, and the functional dependence of % upon

solar
E(t) must be derived.

1. Qotation Dynamics

In order that the tumbling plene turn with the satellite velocity

: . ; . A
vector, i.e., in order that the velocity unit vector i, always be normal
to the tumble plane, as shown in Figurc 1, below, torques internal to
the satellite wust be assumed. TFor simplicity, it will be assuued that
these interval torques are such that the tuible rate, say ¥, is a con-
stant relative to the normal i to the ortital planc. DBecause or the nLon-
alp A SR s :

two-body c¢ifects, i, will niove in inertial space, and so the tunble rate
will not be inertially constent. J3ince the rutation rate of the orbital
plane is relatively small, the satellite torques necessary to explain

this inertially &ccelerating motion would also be small. In any event,

the motion assumed is as valid as any other once the propellor motion is



FIGURE 1.
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presunied, and the results of the error analysis will at least be indi-~
cative of the importance of accurate signature data.

The tumble model is, in algebraic terms,

B(t) =€ + (-t )E, (2.4)

with the rotation state E defined as the 2-vector

€ (t) = [E]

If the errors in the constants ;% and‘é were to be modeled (a covariance
matrix for then introduced in the estimation equations), then G in (2.2)
would have to be explicitly written to express the dynamics of constant-
velocity., ‘/hile this is very simple to do, we will take the errors in

gf " and'é to be unmodeled errors and find, by the quasi-experinental
means discussed in Section IV.D of Leference 5, the sensitivity coelffici-
ents dzl/afl This dll indicate the relative importance of signature in-
formation without depending on the reasonableness of any assumed value
for a covariance matrix on E.

2. Solar Pressure as a Function of Tumble

The details of how"iso rfunctionally depends on E are derived in

la

Appendix II of this report. In summary, the results are as follows.

Define:
kr = specular reflectivity of satellite,
kd = diffuse reflectivity of satellite,
q = Larth albedo,
A = ratio of earth radius to distance between satellite

and earth center,
B, = arc cos h ,
I_ = solar constant,

¢ = speed of light,



>

I

unit vector from center of earth to center of satellite,

i
A
i, = unit velocity vector of satellite
/i\ss = unit vector from center of sun to earth,

s A
coB @ = -(1r ; lss)’
,‘q(al+a2) cos C 2 lc] €1/2 - B,

_ rqa, , TT/2-B).'5\C:| < n/2+D)‘
0 3 TT/2+B)\‘_'\G|.‘_ i
(1+2aa,) : lal £ n/2 - B,

) (1 + )qass) ’ m/2 - By, &ja| € /2 + B,

0 . n/2 + B) <jc| <« v

a) =(-.0417 + .5L31 X)/3,

2, ={.OZ+M+ - 3.17(n —.77)° + ,00L5 (A=.77) sin [lA.B(%—-’??)ﬂ]}/B
&, = 8, [1+ s - 35V _ e-T;' (2 -+ SY)] e

o =fa, +(a/2)[ s+1-3s01+e)?]}cosa

+{ A2 Lam-sin )2 + (-sin ¢)’] - (1-)6"")3/2 } sin a
A u

(1% 2 sin 6)o 2

O ==k + . 3%

7 = (c=n/2)/B,
1, y<0,
S =t
-1, :]'> O,

& = 7 P 50T

. A A
sin@ = i1,
cos 8 = \/l—sin2 5
) & 5
L, - (er li‘)/ cos© , the normal to the orbital plane,



A A
lp = li‘x
(see Figure 1),
{1\3 =sin ¥ gp + cos¥ 'i‘n
A A
cos & =1, "1,
A A
cos ay =i, i,

2 2
= "
cos § (pp cos o + p, cos as)/ p° * P,

A=nR
S

Ab = nRC 5 the area of the base of a cylirder of radius RC,

2

s> the cross-sectional area of a sphere of radius RS,

2

A A
in > the vector normal to in that defines the tumble plane

Al = 2LRC, cross-sectional area normal to the base of a cylinder of
length L.

Then the solar radiation acceleration is, for a

Spherical Satellite:

@
=solar

= (I /c) (A/m) [(l + bk ,/9) (py ’i\r + p, ?SS

Cylindrical Satellite:

=solar

to be

)

Il

+

(Ig/c) (4)/m) [[(Ab/Al) (1-k_) |cos ¢ |

1

A A
mk,/6 + (1 +k_/3) |sin g | ][p, 1, + b, I,

[2 (»./2) (k. fcos @ |+ ky/3) - (4/2)k, | sin #|

_rrkd/é][ py cos ¢+ p, cos as]/i\3]

Taking the "ballistic" coefficient with respect to solar pressure

(Inom/c) (A/m) , spherical case,

(I

/

nom

c) (Al/m) , cylindrical case,

(2.5)

(2.6)

(2.7



where

_ 2
Is - Inom (Res/res) s

where Res is the mean earth-sun distance and res is the actual earth-sun
distance, it is clear from (2.5) and (2.6) that the ¥ vector that repre-

sents 6£solar/au3 is simply the terms in (2.5) or (2.6), respectively,

enclosed in the large square brackets times (Res/ res)zz

¥ = (Res/res)2 [}erms in large square brackcts in (2.5) or (2.6{]

(2.8)

10



SECTION III

ESTIMATION AND PREDICTION

A. PRELIMINARY DETAILS
Consider equations (4.1) and (4.2) from Reference 5, suitably

modified to account for the tumbling of a non-spherical satellite:

d(ax)/dt = £(x, t) - £(x°, t) + E(x, B, u, t), (3.1)
sz = h(x, M, b, t) - w0505 49, (3.2)
where Ax(t) is the Encke variation from the two-body orbit Eo(t)
to the actual orbit x(t), f is the vector of two-body accelerations,

and F is the vector of non-two-body accelerations,

developed in detail in that reference and in Section II of this report.
The vector u contained in F represents the dynamic biases affecting

the satellite. The first three of its components,

u
e

zl(t) = u2 3
u

3

are "ballistic'" coefficients which will be actively estimated. The
remaining three of its components account for uncertainties in the
oblateness forces Eo due to errors in x and in the geopotential coef-

ficients J. These are defined by the 3-vector

v(t) =E(x, 3) - E,(%, D),

11



A A
where x = x(t /tn_l) and J are the best estimates of x(t) and J at time

t given all data upto and including time tn-l' To first-order accuracy,

A

or aF
v (8l = =2 [ort) - sf(t/t )]+ G ad, (3.3)

where r and Ar are the first three components (the position components) of
x and Ax, respectively. The hats over the partial derivatives indicate that
they are evaluated around g(t /tn_l) and ﬁ(t/tn_l).

The 2-vector E (t) contained in F describes the rotations of the cylin-
drical satellites to be considered in this phase of the study. Since there
are no very obvious covariance matrices applicable to ¥ (t), it will be
treated as an unmodeled parameter. In keeping with the discussion on sensi-
tivity coefficients in Section IV.D of Reference 5, the study will there-
fore seek the sensitivity matrix 0u/dg8 in order to ascertain the impor-
tance of errors in our knowledge of tumble position and rate. A detailed
analysis of the tumbling mode called out in this study is performed in
Section II of the present report.

I (320,

z = h(x, nsbs t) (3.4)
defines the observations z(t) on the orbit, where

Il(t) = zero-mean Gaussian white noise,

b constant but unknown biases,

z - g?, the difference between the actual noisy obser-

8z(t)
vation and the noise-free observation of the two-body

part of the motion.

12



Now, we can define the error vector

e (t/t,) =a(t) «+2 (_t/tlé) for any vector a2 (t). In the special
e K cases where t assumes discrete values t_, the notation

will be simplified to [ (n/k).
With the g-vector x(t) defined as the column of variables which are to
be actively estimated, i.e.,

Ax
() = |——-{ , (3.5)

Al
the difference equation relating the one-step prediction errors to the

prior in-step estimation errors is (equation (4.31), Reference 5)

(3.6)
 &(/md) = Bn, n1) g(ocl/nd) ¢ g, nel) g, (ml/nl)  +aloedy
where ‘

[ : 7
) Q(n’ n-1) : :Tf(n, n-1)
p 9
@y(n, ned) = (= = = = <= E_:-T;/E'c{ == 5
1
0 1
i : 1]
Tn = tn - tn-l’

Q (n,n-1) = the two-body transition matrix for the states x (see

Appendix IV, Reference 5),

0 i o | o
ox : i |
ﬁﬂmwzf@ma> ________________ I — da,
-] - | ]
S A —(a_s)/Td E A E A
ERE i@ | Y|



A
B(a), U (a) = a—drag /3 du, and ar /au3 evaluated around the
best state estimate E(t/s),
[0 0 0]
dy tn 0 0 0 F 0
= o, i) = g8 t .
v Rac @(tn’ s)ds [1 0 0O . n e
t 4 0 1 0 o(n'1) =/  ECS [
Bk Jo 0 1 A R - . (s)
O O o n_l l
0 0 0 0
0 0 of L 0
Wl(t) = zero-mean Gaussian white noise with power (2 /'Z“d) Uzdrag

per unit double bandwidth in rad./sec.

Finally the following definitions for covariance matrices will be needed.

For any vectors a(t)

Cov E(t) b(t]

where E( ) denctes mathematical expectation and

transpose7

Cov [é(t), g(ti] = Cov g(t)'

and

and b(t),

B[ a(t) b(t)] - B[ a(t)] E[b (t]

Pp(n/k) =c¢ 2B
a0/ = covl_ato) - &n), wim - 8o - g [e.(n/k), gy(n/i)]

The covariances on the environment are

ny (n) =
R 12(n)
Mop

Cov w(n),

Cov b

= Cov -_)t(n) 5

S

14

) denotes matrix

ds,



with
Cov [ w(n), w(m)] = Cov ["’i(n)’ Q(m)] = 0, mgn,

and all cross-variances among w, ;¥, and b identically zero.

B. MINIMUM~VARIANCE DERIVATION
1. Fundamental Expressions

The derivations depend upon three basic expressions: the one-step
prediction error equation already presented as (3.6), a linearized obser-
vation equation developed from (3.2), and the in-step estimation equation
which develops from the linear regression solution to the minimum-variance

problem,

The linear regression solution is characterized as

&(n/n) = 7(n/n-1) + By(n) [ sz(n) - Aﬁ(n/n—l)] {3.7)

where By(n) is a gain matrix to be determined and where, from (3.2),

b2(n) - 88(n/n-1) = h((x, 1, bt - b [a55T; 0]
- b[x(v/n-1), 0, 0,6] + nfx>-050; t]. b

A
After a first-order expansion around x(n/n-1), the latter can be written

as

62(n) - a&(n/n-1) = K ([ z(n) - To/n-1) ] + Hn (n)g(n)

+ H (n)b 3.9

15



[ 1 00 9]
where Efn)= {0y & = = Sl ,
J I

0 00
oh
H(n) = % A 3
~ lx = x(n/n-1)
By (n) = @
3
V=)
Hb(n) = dh
%
x = fn/n1)

Subtracting y(n) from both sides of (3.7) and employing (3.9),

we find

_e_y(n/n) = !:I - By(n)Hy(n)] _e,y(n/n—l) - By(n)Hq(n) n (n)

- B 1R
() (m) 109

16



2. Computation of Optimal Gain By(n)

As discussed in Reference 5, the minimum-variance gain matrix is

No matter what the form of the weighting matrix A (in Reference 5 we
happened to assume it diagonal), the minimum estimation variance obtains

Since, from (3.10}

(n/n) = [I-D H ] P (n/n-l) 5= B}Ly] & p H R,n(n) H,lTByT
e B}_anbebTByT - [r-8j, ] Pyb(n/n-l)HbT ByT - B P F(n/n-1) [z-51] " :

(& 02)
where By and the H!'s have argument (n), it can be shown in the manner of

Reference 5 that the optimal gain is

By(n) = [Pyy(n/n-l)HyT(n) + Pyb(n/n-l)H.bT(n)] [Hy(n)Pyy(n/n—l)HyT(n)
+ Ho ()R, (0, (n) + Hy(n)Ry 1, (n)

i Hy(n)Pyb(n/n-l)HbT(n) = ub(n)pyg(n/n.l)HyT(n)] )

(3.13)

17



Note the covariance matrix P"b(n/r-l) that appears here. If, as in the

J
perfect sensor case, we are to generate the estimation covariances reccur-
sively, two new cxpressions must be derived in addition to those that were

needed for perfect sensors: Pyb(n/n—l) as a function of Pyb(n—l/n—l), and

Pyb(n-l/n-l) as a function of By(n-l) and Pyb(n—l/n—Q).

~

. DPrediction Covariance Computations
P) P

2

Direetly from the perfect sensor case -,

gxy(n/n—l) = Qy(n, n—l)gxy(n—l/n—l)QyT(n, n-1)
+

Qy(n, n—l)Pyv (n-1/n-1) 0

T
2 v (n’ n“l)

=2
+ . L
- (n, n 1)pyv2 (n-1/n-1 )(DyT(n, n-1)

Pe)
+—5§; (n, n—l)Pvzvz(n_l/n_l) dv T

A

oy aF
?yJ(n/n—l) = [@y(n, n-1) + 52; (1, m=i ] a%g (n—l{} EYJ(H-l/n—l)

A
oy oF

—o
+'§§; (n, n-1) 3 (n-1) Pigs

where FJJ = Cov (Ai), the covariance of the geopotential coefficient

errors.

Multiplying (3.6) by EL and taking the expected value, we computc

the additional prediction covariance needed for this real sensor casec:

18

( , n=1 o
5%; n )+ ny(“ 1) 5

(3.13)

.20



A
P.(n/n-1) = | & (n,n-1) + % (n,n=1) s (n-1) | P, (n-1/n-1).
b —— — b
J [ J 622 3y ] J (5.15)

L. In-Step Covariance Computations

Upon substituting the optimal gain By(n) defined by (3.12) into
equation (3.12), we can rearrange terms and make the appropriate can-

cellations to obtain

Pyy(n/n) = [I = By(n) Hy(n)] Pyy(n/n—l) c By(n) Hb(n) PyTb(n/n—l)

(3.16)
This is to be compared to (4.41) in Eeference 5.

e can post-multiply (32.10) by gz (n/n) = XzT(n), use the definition
2
for Xz(n) provided by (3.3), and take the expectation:

A

Pyvz(n/n) = [I = By(n) Hy(n)] Pyy(n/n—l) ;%Q (n) +
T . S
pyoto/t) Fo () | -2 (a0 ma) £ 7 v =

327
where the argument (n) on the partial derivatives indicates evaluation
A
at the point x(n/n), and

eF, _ | eF, {coo | ooo
37 o =OOO | 000
L £ 1000 } 000

[}
Equation (3.17) is to be compared with (4.42) of Reference 5.

The matrix P (n/n) does not differ from its perfect-sensor form:
22
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A AT

6 OF
v2V2(n/n) (n)P ~n/n) 3 == (n)
3} aF T
2 (B 52 () + Tw/n) + T (o/h),
where A N
3F, S
TI(n/n) = 5_— (n) PrJ(n/n) () (3.18)

However, a new matrix need be computed for the right side of (3.15).

Post-rultiplying (3.10) by b', we can calculate

P p(n/n) = [1-3m) B ()] Py(n/n-) - B (n) Ky(n) Ry .
3.19

to complete the error-analysis recursions.

The filtering process is the same as in the perfect-sensor casc,
except that the Pybmatrix recursions are new and the microscopic de-
tails of the other recursion relationships reflect the observation-

noise and bias statistics.



SECTION IV

SENSOR MODELS

Three basic sensor types are to be studied under the subject con-
tract for their performance in mass determination. These are (1) mono-

static radars, with observation vector

Range

_ Range-Rate _
_z.(t) = Azimuth = Q(E: q: b, t)q

Elevation

(2) tristatic radars, with observation vector

~ -
Range

Range Difference

Range Difference

Range-Rate

Range-Rate Difference

Range-Rate Difference_|

z(t) =

and (3), Baker-Nunn cameras, with observation vector

Declination

E(t) = [%1ght Ascen51o€] = Q(K: %’ b, )

The detailed functional relationship between the observations and
the states are presented in Appendix III, where the partial derivatives
with respect to states, noise, and biases are developed. Note that all
the sensors are affected by time biases, and the Baker-Nunn cameras are

affected by a-c time fluctuations as well.
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APPENDIX I
THE COUPLING OF SATELLITE TUMBLING TO ITS

ORBITAL MOTION IN A CONSERVATIVE FIELD

Various writersl’2’3 have considered the problem of the motion of a
non-symmetrical satellite in the gravitational field of a major planet.
Although the satellite may nominally be travelling in a stable orbit, there
is obviously an interaction between the equations which govern the rotation-l
motion of the satellite about its center of mass and the equations of orbital
motion. In some cases, interest in this problem centers about the advantageous
use of this interaction for purposes of gravity gradient stabilization; in
other instances, there is concern about the possibly detrimental effects of
this coupling such as excessive tumbling of the satellite, or even significant
distortion of the orbital path.

It is one of the purposes of this appendix to show that, in almost any
practical situation, these detrimental effects are entirely insignificant.
Furthermore, the perturbation of the orbit due to the lack of spherical
symmetry of the satellite can almost always be ignored, and the rotational
(tumbling) equations can be solved with insignificant error under the assumption
that the center of mass of the satellite is moving in a pre-computed orbit. Using
this assumption, the tumbling equations for the satellite will be derived in
a form which is useful for computational purposes.

In the following derivation, it will be assumed that the satellite is
a body of revolution, or at least that two of the three principal moments of
inertia are eoual. The results, however, leave little doubt that the above

claims are equally valid for a body having all three principal moments of



inertia unequal.
In Reference 1, it is shown that the gravitational torque N exerted on

a body in an "inverse square law" gravity potential field is given by
3y A A
N=-(y/r) i, xJi,
where (x) denotes the vector cross product, and

M= gravitational constant;

r == distance between centers;

A A A A
ir = unit radial vector expressed in an i., i2, i3 coordinate
system which 1s fixed in the body;
. . . . A A A
J = inertia matrix of the body with respect to the i, 1,5 1.
o~

coordinates.

A
10 1o i3 coordinates are directed along the principal inertial axes

of the body, then J is a diagonal matrix having diageonal clements equal to

A
If the 3, 1
the principal moments of inertia.
Let w denote the angular velocity vector with components equal to the
angular velocities about the principal axes. Kuler's equations of motion
describing the rotation of the body have, in this coordinate system, the

L

well-known form
JO +wx Jo =N,

where the dot denotes differentiation with respect to time. In the case of a

body of revolution, we take

0] 0]
J = 0 I 0 3
0 0 I-AT

(I.1)

(T2

~—~
38
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where AI is positive for long cigar-shaped bodies, negative for saucer-shaped

bodies.
Let the orthogonal matrix S represent a rotation through an angle B

about the symmetric principal axis of the body, and set w = S\, or

cosp sinB 0
W = [-sing cosp 0/A.
0 0 1

If the angle p is allowed to vary with time, then @ = Si b é&, where

sing -cosf
S=-p cosp sing o |-
0 0 0

We also introduce the skew symmetric matrix fl, defined as

0] -w3 w2
-w2 wl 0]

so that we can write w x Jw =f§lJw. With this notation, (I.2) becomes

J(sh + 1) + QJISA = N,

T

Since J obviously commutes with S, S° and é, this latter equation can be

put into the form

b

JA + LJA = S°N,

with L = 1§ + sf)s. 1If STy x3 are the components of the vector A,

(I.4)



we find

0 p-xB
L=|_-(4=
(g x3) 0
) &
and
Xz

B, = (T8 = AIXB) =

With respect to equation (I.1), note that sT(i‘r x Jﬁr) is simply the

A A
vector ir X Jir expressed in the rotated coordinate system having unit vectors

A
']n

the form (I.3); hence,
A =1t - exdd 35)35
in (3\1, 3\2, /,j\B) coordinates, and
5" = suerr (3 ), < 5)

A

3,

_ -3 A AL A A
= 3 Y 0Ir (o g i 33)

0

26

AL A A
. 32)(1r-33)

= ST’i\n (n=1, 2, 3). In this system, the inertia matrix J still has

(1.5)

(1.6)



Equations (I.4), (I.5) and (I.6) show that A, = 0, or A(8) = 2,00).

3

A A
If we now let P = (ir-jn), n=1, 2, 3, we can write the equations of

rotational motion in the following simple form.

d

dt

[)\l]___(f)\.?_b) 7\?] +§Bf [ r2r3]'
kz I =\ r3 I —rlr3

Let us now relate the equation (I.7) to a coordinate system,

(n,p,q), having unit vectors with inertially fixed directions, and an

origin moving with the satellite. Assume that the satellite is travel-

ling in a simple elliptic orbit. (This will certainly be valid for

sufficiently small time intervals; moreover, we intend to show that

the perturbation of the orbit due to tumbling is actually negligible over

A A
a period of many orbits.) Define the orthogonal unit vectors ﬁp, iq and in

as
N
b it

p

A
A

A
8l
n

follows:

= %r at the instant the satellite is passing through perigee;
= unit vector in the direction of instantaneous velocity at perigee;

= unit vector normal to the orbital plane, in the direction of the orbit

momentum vector.

If v is the true anomaly, then in this fixed-direction system the

A
vector ir has the representation

Ccos Vv

H>

sin v
0

27
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FIGURE 2.
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Figure 2 shows the orientation of the satellite in the fixed system, in
A
terms of both the fixed ﬁl’ Qz, 13 body coordinates and the rotating
A
31, Sé, j3 coordinates., The angle g has been chosen in such a way that the

unit vector 3i is in the (q,n) plane. It is clear that

a
A= Y sina = angular velocities along (3\1,?2,3\3). (1.9)
é +7Y cos a
In (n,p,q) coordinates, we have
0 sin a cos a
A A A : :
Jp= | cos Y|, Jp = |-cos asinY |, 33 = | sin a sin Y |, ( .10)
sin Y cos a cos Y -sin a cos Y
and we find
N A
rl =cos Y sinv = ir s jl
. : . 2‘ 2
r, =sina cos v - cos a sin Y sin v 5 @ j2
A A
ry = cos a cos v + sin a sin Y sin v ==ir . 33 (Tl

If a and e are, respectively, the semi-major axis and the eccentricity of

the orbit, it is well known that

2
_ a(1-e?)
B et (1.12)



Noting finally that (AINn_-If) = (AI—I)X3 + I¥ cos a, it follows from equations

>
(1.9), (I1.11) and (I.12) that the tumbling equations (I.7) can be written

in terms of the physically meaningful angles a,Y and v, and the constant kB.
It is of particular importance that, in their final form, these equations are
entirely independent of the angle B, which in the case of a body of revolution

is an unobservable quantity.

The kinetic energy of rotation is given by

T = (1/2)AT0A = (1/2)0 (5387 ) = (1/2)a (3557 )a = (1/2)u Ju. (I.13)

Differentiation with respect to T produces

T =aTa, (1.14)

which may be regarded as either the rate of increase of the rotational energy
of the satellite, or the rate of decrease of energy in the orbit. Premultiplying

(1.4) by LT, and noting that LTLJL = 0, we find

ToT

T =A"S

1>
=

= zgk AT ry (Xlrz-xzrl), (I.15)
r

where the latter expression follows from (I.6).

In order to justify the previous statements concerning the tumbling rates
and the perturbation of the orbit due to tumbling, it would be sufficient to
show that the change in T over a period of several orbits is negligible both
with respect to the total orbital energy and the implied change in tumbling

rate. The direct computation of the energy or the energy rate, however, would
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essentially require the solution of the nonlinear tumbling equations (I.7), and
this problem is extremely difficult if not intractable.
Consider, instead, the following hypothetical situation, Suppose that
the satellite is equipped with a set of torque rockets which can produce
arbitrary rotations, but no translational motion, of the satellite. Suppose,
in addition, that these rockets are either pre-programmed or controlled by an
intelligent being in such a way that the total decrease in orbital energy
over a pre-specified time interval is maximized. It is assumed that the rockets
are capable of producing both continuous and impulsive outputs, so that there
are no inertial limitations on the possible rotational motions of the satellite.
Since the equations (I.7) no longer govern the satellite rotations, (I.15)
does not represent the rate of increase of rotational energy, but (I,15) is
still the correct expression for the rate of decrease of orbital energy. Further-
more, the maximum decrease in orbital energy under the artificial motion
described above is an upper bound for both the actual decrease in orbital
energy and the actual increase in rotational energy under any natural motion
of the satellite.
Since we are still assuming motion in a nominal elliptic orbit, we can
treat T, a andy as functions of timet or, equivalently, as functions of the

true anomaly v. Noting equations (I.9) and (I.12), we rewrite (I.1l5) as

3
dT _ 3;%(l+e2c§s v)” A rs[r2 da - ry sin a dY , (I.16)
dv a”’(1-e“) dv dv

where ry, T, and r3 are still given by (I.11l). Our plan is now to integrate

(A.16) between specified values of v, and to maximize the resulting expression
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with respect to the unknown functions a(v) and yY(v). For simplicity, we will
work with the absolute value ]AII. Without displaying all of the cumbersome
details, we state that the function Y (v) which produces a maximum for this
integral is simply Y(v) = m/2. This can be obtained either as a solution of
the Euler-Lagrange equationb' which is associated with this variational problem,
or by recognizing that }_T(,i\r X J$r) is largest when the angular velocity
about an axis in the direction of 41\1‘ X ;?3 is a maximum, and this occurs
whenY = n/2.

Setting Y (v) = n/2 in (I.16), and substituting for r, and r , we obtain

2 K|

dr _ 3M(1te cos v)> |aI| sin 2 (a-v) da
dv  2a°(1-¢2)° dv

C1,17)

Integrating this expression between limits vy and v,, we are left with a simple

2

calculus of variations problem in the single unknown function a(v). The

associated Euler-Lagrange equation is algebraic, and leads to the result

~2(1+
tan2(a-v) = 3§(ii§ 303 0 (1.18)

From (I.18), we compute

da(v) _ 1+ 3e(etcos v)
dv (3e sin v)2 + L(1+e cos v)2
and
] 2(1lte cos v)
sin2(a-v) = a
[(3 e sin v)2 +4,(1+e cos v)2]l/2
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Clearly when e <4/7, we must choose the positive sign for sin2(a-v), since
the expression for da/dv is positive for all v in this case. Actually, a
closer analysis shows that the positive sign should be chosen for all e<l,
but the simplér observation is sufficient for practical purposes.

At the endpoints of the interval of integration, if the angle a(v) does
not satisfy equation (I.18), an impulse from our hypothetical rockets can
be used to bring the satellite into position. Inspection of (I.17) leads
to the conclusion that, if the integration is performed over an integer
number of orbits, the maximum contribution to the integral due to endpoint

effects is given by

epS s (1.19)

a.3(l—e)3

Substituting the expressions for sin2(a-v) and da/dv into (A.17) and

integrating over a single orbit, we find

24|ﬁ|AI| F(e),

orblt 3(l e2)3

where

1 " 2(1+e cos )41( i )2 + L(1+e ) + 3e(et+ cos v)] dv
F(e) = & v 3e sin v cos Vv 0
m b [(3e sin v)2 + 4 (1+e cos v)2.]3 .

The following table shows the results of a numerical integration for the

function F(e), as well as a tabulation of the values of 1 + 262,
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2

e F(e) 1+2e
0 1.000 1.000
Okl 1,029 1.020
0.3 1.184 1.180
Q%5 1503 1.500
Q7 1.970 1.980
146 2./989 2.000

Hence, we have the very simple estimate

2
AT. < :zgrr[AI[(l+2e ) ) (I.20)
orbit = aj (1—e2)3

Combining the results (I1.19) and (I.20), we obtain the following upper
bound for the decrease in orbital energy, and the corresponding increase in

tumbling energy, over a period of n orbits.

3 2
[AT(n)Isj%M',: (ite) ;’;ﬂlﬂe) ] (I.21)
a (1=e*)’
Since the total energy of the orbit is, initially, h = mu/2a, where
m is the mass of the satellite, the fractional change in orbital energy per

orbit (neglecting endpoint effects) is no greater than

oh o 6m aI| (1+2¢?)
B a° @ (1—e2)3

(1.22)
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For the extreme case of a cylindrical satellite having length L and radius

R £<L, this becomes

2
2
2

h s (3=e%F

For an earth orbit, we must have a(l-e)>2 x 107

ft. Also, for 0£e%£0,8,
the inequality (l+2e2)/(l+e)3(l-e) <2 is valid. Hence, over the stated range
for e, we have Ah/h <10-u‘1.2, where L is the length, in feet, of the cylindrical
satellite.

Assume now that the decrease in orbital energy over a single orbit
corresponds to an increase of I(Aw)2/2 units of energy due to a change in the

angular velocity of the cylindrical satellite about some non-symmetric

principal axis. In this case, we must have

(&0)°g _6mpd la1] (t2e?)
[a(1-¢)] 3 1 (1+e)>

(X.28)

Noting that |AI|/I<1 for any cylinder and (1+2e%)/(1+e)°<1 for e20, we

take M= 1.4 x 103 £, 3/sec.2 and the above inequality for a(l-e) to obtain

6

(8w)?¢ 33 x 10 ri=.1d.2/sec.2 (I.25)

for a complete orbit. This estimate is extremely conservative, since the
satellite cannot tumble end over end and simultaneously maintain a configuration
which causes the orbital energy to decrease at each instant. The main value

of the estimate (I.25) is in demonstrating that, over the small portion of an
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orbit which lies within the range of a single tracking station, the net

change in angular velocity due to gravitational effects is rather small.
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APPENDIX II
PERTURBATIONS ON CYLINDRICAL SATELLITES

DUE TO SOLAR RADIATION PRESSURE

A, GENERAL

There are three components of solar radiation force acting on a
satellite:

(1) That due to energy impinging directly from the sun and re-
flected from the earth.

(2) That due to the reaction of specularly reflecting radiation
from the satellite,

() That due to the reaction of diffusely scattering radiation
from the satellite.

As noted in Appendix I of Reference 5, if the incident radiation
approaches from the direction‘ga shown in Figure 3 below, then the
pressure exerted normal to gziis
4%

il

p=(I/c) % =piy, (I1.1)

where Is is the irradiance and c is the speed of light. When p impinges

upon a differential surface area dA, the differential fzrce due to the

incident flux is

/\
aE, = (e oap) =%, (T /) () - an), (Er.2)

while the differential force due to the flux being reflected back from

the surface is

dar

A A
—refl = _lrefl (Ir/C) (lrefl 4 dé,)) (II.;)

3%
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FIGURE 3.

PER|GEE

TUMBLING CONFIGURATION
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A .
where irefl is the unit vector in the direction of the reflected flux and

Ir is the irradiance in that direction,

The net solar force due to direct solar radiation is the integral
of {I11.2) plus (II.3).

liow, the total pressure p at the satellite consists of a part di-
rected from the sun and a part reflected from the earth. For simpli-
city, this pressure vector will be resolved into components in the Air

A
and 1 directions, i.e., radial from earth and sun-to-satellite, re-

-~

=
(Sl

spectively. This pressure vector can be written as

A A\
p=(I/c) (py i, +p, 1) (II.4)
where, to a good approximation, >
INC| (al+a2) cos a , |a|£n/2_3>‘
I \g & 5 rr/2-B}\é|a|£' 1*./2+B>\
. =
0 " 17/2+B>\$\a|§ ™
(l+>\q3~2) ’ lal é TT/Z"B)\
P = (l"""qass) ’ n/2 - B, 4|c| £ 17/2+B)\
2
0 5 /2 + B £ la] < o
given that
q = Earth albedo,
A = ratio of earth radius to distance between satellite

and center of earth

Bx = arc cos A,
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8, =(-.0417 + .5431 \)/3,

8, ={0ud - 32700 -.77)° + 005 (r-.77) sin [m.3(x-.77)n]}/3

~ sTy =T
8.5 = 28y [l+ s -se° "9 - ¢ y (2 + sy)] 42>

2 ={ass + (al/2)' [ s +1-s8(1l+ sy)d]} cos o

.

+.{ 22 Cam-sir o) + (A-sin a)3] = Ll—)\j‘)B/‘?‘ } sin a
(1+x2- 2» sin 0)3/2 S ' 6

T =-4+9.5

= (CL—TT/Z)/ﬁ)\

-5 T,
S =
-l, y>0,
d=3.7 + 55(n-.77)% ,
B, NET RADIATION FORCLS

1. Incident Tadiation

Neglecting the reflection effects, the impinging energy will
A
produce & net force in the ii direction defined by the integration of

(II.2) over the surface A of the satellite:

4 J | & ds
Ein . f dE. i =k li . d__b + .x.i _l s
; A

A 2 |
S b 1
(FE-6)
where
2 . : .
Ab = th s the areca of the base of a cylinder of radius I
@
Al = ZLRC, cross-sectional area normal to the hase of a ¢ linder

length L.

A
Taking the unit vector i_ to be normal to the base of the cylinder, (secc

Figure 3), and defining
A
cos ¢ = -(ii 0 Gls

-
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" "
where 33 = sin § ip + cos g 1,

we find that (II.6) becones.

Fo=p (4 |csg | +4 |[sing |). (1I.7)

2. Specularly Reflected Radiation
Consider a ray of light which is reflected from an increment
dA of surface area according to Snell!s Law., If the ray impinges at
an angle 0 ¢ ¥ £ n/2 with the normel, then it will leave at an engle
¢ _ ith the normal, ac shown in Figure 4 below. If the specular
- dA = iA da
A
i

f;
refl

dA
FIGURE 4. SPLCUL.R RLFLECTION

reflection coefficient is defined to be kr’ then thc reflection ir-

radiance is I =Xk I, and the integration of (II.3) yields

A A A 4
L M ‘( fhery (Gpepp ~ G0 + r Loern (pepy © @)

ﬁb side
(LE.8)
liow, over the base of the cylinder,
A
dA = i, sign (cos ¢) 42 , (I1.9)
where
= £
sign (x)={ L5 2l
5 e 2(€)

the sign function being necessary to distinguish whether the top base



of the bottom base of the cylinder is exposed to the light.

is the normal to dA, it is clear from Figure 4 that

A

A
irefl >

A
it 2(cos F’n) i,

But from Figure 3 we see that

cos ‘fn = |cos @,

so that (II.10) becomes

~ B " ; A
lep) =13 72 |cos @ | sign(cos @ ) i
A A
=1 2cos ¢ 13 .

Hence, over the base area,

A
& i dA = ( -|cos @] + 2|cose|) dAr

]

|cos ¢ | dr.

B gl

(IT.09)

(11.11)

(IT.12)

Combining (II.11) and (II.12) in the first integral in (II.8), we have

A A , A A
'/A irefl (iref]_ - dA) = Ab |cos ¢|(ii + 2 cos @ 13).
b ‘

(11.13)

Now, integrating over the side surface of the cylinder, we note that we

can decompose p into two parts: One part tangential to the longitudinal
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lA‘(COS x) i1+ {SIN Q) L2

FIGURE 5. SPECULAR REFLECTION FROM CYLINDER WALL
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axis and one part normal to that axis. Figure 5 provides the details.
A
Only the normal part of p, that having direction cosine - sin ¢/ 12,

appears in the dot product

A ANIERA A

“refl © AT TR Ia
so that

A

i G in @ si 0< @<
3 » 1, =sin @ sin o, 0 £ P < m,
refl A (II.14)

A A
where a is the polar reference angle to iA. The full unit vector irefl

also is needed. Referral to Figure 6, below, where the origin has been

moved to the surface increment dA of the previous figure, provides

grefl = (sin #)(sin 2a) ;i - (sin @)(cos 2a) ;;
- (cos §) ,i\3. (II.15)

Substituting (II.14) and (II.15) into the second integral in (II.8),

we find
I
N o 3 _ y A
f lrer1 (Irepy " 94) = / [(sin @) (sin 20) £,
Aside 0

- (sin @)(cos 2a) ?2 - (cos ¢5 gé ] (sin @)(sin a) R Lda,
(II1.16)

. 2 A
= e Al - §JJ31_Q Q2 + (cos @)(sin g) i3)’

Al sin

g
3 [h(cos g) /i\3 +/i\i] 5

0O<g<m.



FIGURE 6. GEOMETRY FOR DIRECTION

A
COSINES CF i

og1» SPECULAR CASE.
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The net specular reflection force now follows from putting (II.13)

and (II.16) into (II.8):
A
Frory == % P [{Ay] cos 8] - (a/3)]stn 6]} 3,

+ 2008 8 { ] cos g] - (aa/3)]s1n 9} 4, ]

(LL.I7)
3. Diffusely Reflected Radiation

For the case of diffuse radiation, the reflected energy obeys Lambert's

Law. As developed in Appendix I of Reference 5, the differential reaction

force is normal to any increment of area dA:

A A
Wrery = 1p (23} (egTyye) (15 - ab),

(1II.18)
where kd is the diffuse reflection coefficient. Again
Frer1 = dgrefl 3 d/r dgrefl ’ (I1.19)
s Aside

For the base,

J/fA af. o =- (2/3)(kdIs/c) A, cos @ 23’
b



For the side, (II.14) can be used to obtain

1

: A
‘//; dF ¢ = - (2/3)(qus/C)(sin ¢)%{/\ Bcos a)iy

) 2 I . 5

= =A, (/6) (T /e)(sin #)1,,

= Al(n/é)(kdIS/c)(gi + cos @ 23).

Hence, for diffuse reflection,

f'refl = (kd P/3) [_(TTAl/Z);i +{(1TA1/2) - 2Ab)(cos ¢)§3] . (II.20)
C. FINAL RESULTS

Combining (II.7), (II.17), and (II.20), and upon dividing by the
mass m, we obtain finally, after using (II.4) to substitute for p
A
(or ii),
Ysotar = (Ig/c) (4)/n) [:[(Ab/Al) (1) |cos ¢ |
: i A A
+ Trkd/é # (14 kr/B) |sin ¢ |][pl i + Py 1gg
+ [2 (4 /8) Gk loos ¢ |+ ky/3) = (b/3)k_ | sin @ |

A
= nkd/é ] [ Py cos c  + P, Cos a_ ] i3 1y (II.21)
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where

A A

[ofe)S] C..s = lSS ° 13 )
A A

[ofe}S] G.r b lI‘ R P 3

= <
cos § = (pl cos a_ + p, cos as)/ ot P,

The last identity follows from the fact that

cos g = 3. ¢ i

i 3

and from (II.L), which yields

A Y S —
=0 4L Ty lss)/ p°*p,
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APPENDIX ITT

OBSERVATION EQUATIONS

The notation used in this appendix in some cases contradicts the
definitions for the same symbols used elsewhere in this report and in
Reference 5. This occurs because particular symbols are commonly ac-
cepted to mean one thing in orbital mechanics, and something entirely

different in radar technology.

The symbol definitions within this appendix which are to be inter-
preted locally only are the following:
R = range
R = range-rate,
A = Azimuth,
E = elevation,

right ascension

f
I

(S BN
I

declination,
r = station location in inertial geocentric coordinates,

AR,= range differences, i =1,2,
AR, = range-rate differences,

q7 ,6 = defined forms of station latitude and longitude,

L9



A, MONOSTATIC RADARS
The monostatic radars to be evaluated in this study :acasure range
I, range-rate R, azimuth /, and elevation I. Given the statc vector x(t)

and the station location veecter
r =
Ly ;
Is
Z;—w
(o]

in inertial coordinates, and given the inertiel spin rate of the ecarth

w_, we can write explicitly the entries of the monostatic ol.servation

C

vector
at) = |, | = bz bt (T71.1)
These are
R=V (-x)?+ (-7 )%+ (- 2)?,
R= (/R [ (x-x)(x+og)+ (v -y )7 -wx) + (z-3)z],

. = (ITi.2)
L 1fR2_(Zflf)d.
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where

x" sin @ cos ©' sin @ sin Q' = cos @ X - X
y''! =| - sin 0 cos ' 0] Yy -7,
i cos § cos O' cos @ sin o' sing z -2
: _ 2 2. 2 .
sin @ z /[xs b Sl 8 s (Latitude)
sin 0' =y_ /| x?+ v2 . (Longitude)

Then
arR/dx = (1/R) [x -X, ¥ ~-¥g 2-25,0,0, O] s
R(xtugy,) - R(x-x,), R(y-wx)) - R(y-y,)

aR/ax = (1/R) ;
R R

Rz - ﬁ(z-zs)
S 8 x‘xs: Y‘ys: z‘zs )

1
aA/a§= RQ_(ZIH)2 [(-x' sin O'-y cos ©' sin<p), (x”'cos o'

-y sinO'sin(})),y'

cosQD,0,0,0],

_ 1
dE/ax WRz i (z"')2 I:G:os o' cos @ - (z"'/Rz)(x-xs)} :

{sin o' cosp - (2"’ '/Rz)(y-ys)} 5

{sin@ = (z"'/R2)(z-zs)} ) O] .

(111.3)

51



which are to be used in

3R/3x |
3R /dx
dA/ax
aE/aEJ (L)

The noise matrix H_ is the 4 X 4 identity matrix

S ) (LTL,3)

and the bias matrix Hb is the 4 X 8 array

I dh ' dh
- =N . (III.6,
H = 0 i dr ) 3t 5 .0,
b i =5 i
T i
! i
which associates with the bias &-vector
1 Range Bias i
Range-Rate Bias
Azimuth Bias
(III.7)

b= Elevation Bias
xl Station Location Bias
yl Station Location Blas

zl Station Location Bias

i Clock Bias B

Now, the station location biases are given in an carth-fixed ccor-
dinate system.and are constant in that system. Defining the earth-fixed
systen zl = column (xl, yl, zl) used in Appendix 1II of Reference 5, wc
kave that

r = T(t) zl = PNG r,

=)



where P, N, and G are orthogonal matrices that account respectively for
the carth's precession, nutation, and rotation about its polar axis.

Note that %k is composed of the rows

dr
=s
rf3r, =  =3L/3r,
B2
i
Fl-ox) - L= )]s [Be - f(z-2,)] :l
ohfor, =  -dr/or,
3E/r = -3E/dr, (ITL.8)
vhere 8 is the S-element row vector in 9 = | o | R
& ax or : ar

The timing-bias part of (III.é), dh/dt, is a column array of the

following scalar partials:

3n/at = (8R/dr) ¢ + (aR/a;s) o
dR/et = (af/ex) & + (oh/or) £,
sr/ot = (3r/or) ¢ + (3r/er)) k.
ac/et = (3C/or) &+ (SE/or)) R,
(I11.9)
vhere —xz:
b= X,). ’
L Xz
':ys‘
r =1z w
=S S e
-C Bl
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B. TRI-STATIC RADARS
The tri-static radars provide & range and range-rate measurement

R and R from one site, and the differcnces AR, = R-R, , AR, = R-R

i 2 2’
Aﬁl =t - ﬁl T Aéz = = Fz calculated with respect to the ranges and
range-rates Rl’ R2 and Pl’ ﬁz to two other sites. The observation

vector is now

z(%) ®,| = bz p bt © (III.10)

b .
s sl s2
» = r = r =T «r
=5 Is | 2 =sl Ys1 | =s2 vs2
A Z Z
3 sl s2

then R and & are the same as in the monostatic case, whereas

= B - e )2 4 (e )2 32
AR, R \/(x x )"+ (=7 )" + (2205,
ARi = ToAD 3{? [(x_xsi) (x + wcysi)
din |
+ (yvg) (rwx ) + (z-2_,) 2],
i =12, CIFeaal)
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The state partials 3R/dx and afi/ag_c are clearly the same as before, but

a(ARi)/azc_ = . R1AR [[(x—xs) (R-ARi) (x—xsi) R] 5
SEREE

=q]
—
.

[(y-v,) (R-2R)) - (3-v,)

[(z—zs) (R-ARi) - (z—zsi) ] :
O, O, O ] )
é(Aii)/az_c =|:[R(}'c+weys) = R(x—xs _ meysi + (R—ARi) (x—xsi) ] )
B RoAR, (piF) )
[R(y—wexs)—ll(y—ys) I 2T S (R—ARi) (}:—xsi) ] )
R B (B, )
-R% - Bi( z—zs) _ b T (I‘-—ARi) (Z_Zsi) ] ,
L 2 R, (neem, )
- x_xsi] B [ IV - y_:’,si] 5 [ i
L. R E-4R, B R-AR. ke F=AR,
i i P
i=1,2 (III.12)

Thesc arce row cntries in

dR/dx
a(APl)/a£
a(AP2)/a§
F/ax

a(aﬁl)/a§

—
—

S(AD
u(ALL2)/a)_c_

e -
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The noisc matrix HY is now & 6 x 6 identity matrix,

matrix Hb is the 6 x 16 matrix

vhere

H
N

+
~

éR/dzs

AP /
a(¢R2)/e£s
af\/azc
S(Lﬁl)/Sgs

I\,. \
a(uRz,/ags

o

A \ /;
a(upl//aA_I:s

L
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oh

0Ar

-s2

)

and the bias

|

I oh

| o 2
| ot

(III.1h)



stetion at r_ is locatcd by geodetic survey.
iases in tle earth-fixed system (X

surveyed relative to the

culoa
ct I

an/at

_a(aéz)/at

/
a(ARl),at
G(ARZ)/Gt
3R/3t

a(\él)/at

liou, thc surveys for the threc stations arc such that the master

station.

(€3

The bias veetor i1s the

Range Bias

Range Bias

Range Cias

nange-nate 3

nange-Latc

Jaster Stat

t2ster Shatlion

Slave 1 l.clative Location 3ias

Slave 1 Lelative Location Dias

Jts position has survey

Aol ol e
s 4L 9 o . b

siave stations ars

master:

(TIT.25)

the rclative position vochors Ar . ind.e-
oL
than the absolutc surver bias on the nastoar

16 x 1 array

joi Locatioir Dias
location

Location 2ias
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Az blave 1 llclative Location Dias
L - - : - . .
A olave 2 Telative Location Dias

1 " . o : :
5y Slave 2 Ilelative Location 3ias
.1 = . . !
Az, Clave 2 Lelative Location Bias
Clock Bias

Upon pubting (LIT,13) dnto {(II1.11)s; defining

L. o= D=ATL,
1

. sl

L. o= =4k,
i al

and taking derivatives, we find, for the range veriablces,

= A .
&n/or, = -/ or

~ -\ % oA ~ AT
U(-a. )//CES = d./bzs i L(._L.

e
pE

[ SN

(III.16)

CETE 1T

where the second cquation results from expanding AEi into R—Li and

noting that —dﬁi/agh = a(a;i)/a(;r .). Tor the range ratcs,
[}

51

CE/G;S = as given in (II1.8) ,
AR /ogs = §R/dr_ + C(L;:)/G(Lgsi)
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The time derivatives for 3h/3t are

AERL
\)u/v

e
o3

= (R/ox) £ + (oR/or) .,

o(en.)/ov = [a(an)/ex] £+ [olan;)/er ] 2y

afi/ot = (af/ax) % + (h/er)) £

+ [a(ar ) /3(ar ) ] apgy

=}

(el )/ot = [a(el;)/ex ] & +[3(af,)/0r, ] £,

S. BAKER-IUNL

+[a(ar..l)/a(g

MR IR A

wrdiouilr O

e )]L.i 0

=51

(I1L.39)

The Baker-liunn cancras record right ascension and declination of

thic target.

where ¥ is the right

The obscrvation vector is

i} 6/6:_’; L

-
"l = e H
Lb 40\ ':t, i)

derivatives are as

Vs o, 1

o

) 2 =i

o
( PSS
L o

(=) 5 @3

Thesc arc, respectively,

o,o,o]’

39

]
= B
s

(III.20)

ascension of CGreenwich, the "Greenwich Hour Angle.”



for

dot /3x

38 /3%

(IEL.27)

The noise matrizx, since a fluctuating time error 1s assumed Ior this case,

is now the 2 x 3 array

0 : aa/at]
J

1] 06 /0t

—Cd/a_l"_s = 30‘/3.‘: >

-368/or. =38/3r ,

and

dk /ot = (3 /or)

¢b /3t = (38 /3r)

where, to a high degrce of

of years, & /3% = w, = const.

o |

o

£+ (da/for ) b - 3¥/dt

£+ (3d/or) £, »

il

Wl
e i 1y

16}

which corresponds to the bias ~rcctor

=2

ight Ascension 3ias
Declinetion Eias

x Station Location Bias
7 Station Location Bias
z~ Station Location 3ias

Clock Bisas

60

da /3t
J
3d /3t

(III.23)

(LT 20

accuracy for orbital durations on the order

These are also used in the 2 x 6 matrix
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